Vol. 20 No. 2 July 2008

About **TERI**

A dynamic and flexible organization with a global vision and a local focus, TERI (The Energy and Resources Institute, formerly known as the Tata Energy Research Institute) was established in 1974. TERI's focus is on research in the fields of energy, environment, and sustainable development, and on documentation and information dissemination. The genesis of these activities lie in TERI's firm belief that the efficient utilization of energy, sustainable use of natural resources, large-scale adoption of renewable energy technologies, and reduction of all forms of waste would move the process of development towards the goal of sustainability.

Biotechnology and Management of Bioresources Division

Focusing on ecological, environmental, and food security issues, the activities of the Biotechnology and Management of Bioresources Division include working with a wide variety of living organisms, sophisticated genetic engineering techniques, and, at the grassroots level, with village communities.

Mycorrhiza Network

The Biotechnology and Management of Bioresources Division's Mycorrhiza Network works through its three wings—the MIC (Mycorrhiza Information Centre), the CMCC (Centre for Mycorrhizal Culture Collection), and *Mycorrhiza News*.

The MIC is primarily responsible for establishing databases on Asian mycorrhizologists and on mycorrhizal literature (RIZA), which allows information retrieval and supplies documents on request. The CMCC has the main objectives of procuring strains of both ecto and vesicular arbuscular mycorrhizal fungi from India and abroad; multiplying and maintaining these fungi in pure cultures; screening, isolating, identifying, multiplying, and maintaining native mycorrhizal fungi; developing a database on cultures maintained; and providing starter cultures on request. Cultures are available on an exchange basis or on specific requests at nominal costs for spore extraction or handling.

Mycorrhiza News

Mycorrhiza News – a quarterly newsletter publishing articles compiled from RIZA – invites short papers from budding and senior mycorrhizologists, giving methodologies being used in mycorrhizal research, providing information on forthcoming events on mycorrhiza and related subjects, listing important research references published during the quarter, and highlighting the activities of the CMCC.

Contents

Taxonomic findings [Series 1] Acaulospora from Goa	2	Spatial variations of AM fu from the Western Ghat
Research finding papers Interactions between <i>Acaulospora</i> and <i>Azospirillum</i> and their synergistic effect on rice growth at different		Centre for Mycorrhizal Cu Disposal of black liquor wa
sources and regimes of soil phosphorus	6	transpiration system us mycorrhiza
Synergistic effects of AMF and bioformulations on softwood grafting in jamun (Syzygium cuminii Skeels)	12	Recent references
Efficacy of AM fungi in improving the growth performance of <i>Cyamopsis tetragonoloba</i> under saline soil		Forthcoming events
conditions	17	

Taxonomic findings [Series 1] Acaulospora from Goa

Dr Sharda W Khade*

Department of Botany, Goa University, Taleigao Plateau, Goa - 403 206, India E-mail: sharda_khade@yahoo.com

1 Acaulospora delicata Walker,

Pfeiffer, and Bloss

Spores were formed singly in soil, laterally borne on the neck of a sporiferous saccule. The saccule is broad, with a cross sectional area $60 \times 80 \ \mu m$ to $100 \times 120 \,\mu\text{m}$, hyaline, and consists of the swollen tip of a thin-walled coenocytic hypha. It is 10–12 μ m in diameter, with a single wall of $122 \mu m$ thick. The spore is hyaline to pale yellowish-cream, globose to sub-globose, and is 80–105 µm broad (Figure 1). The spore has four walls in two groups (A and B). Wall group A consists of a thin hyaline, outer evanescent wall (wall 1), which is 1 μ m thick. Closely attached to wall 1 is wall 2, which is a relatively thick $(2.5-3.5 \ \mu m)$ laminated wall with up to six subequal laminations. Wall group B consists of two thin, hyaline membranous walls (wall 3 and 4, which are 0.5 μ m and 0.75–1 μ m thick, respectively). Wall 3 is covered by minute granular excrescences.

Distinguishing feature: Presence of granular excrescences on wall 3 of Group B of the spore. **Distribution:** Recorded from old Goa with 37% frequency of occurrence.

Association: Found in association with *Carica papaya* L. plants from coastal area of Goa, India.

Figure 1 A crushed spore of *Acaulospora delicate* showing its spore contents (× 400)

2 Acaulospora foveata Trappe and Janos

Spores were formed singly in soil, borne laterally on the neck of a sporiferous saccule. The saccule is globose and 180–200 mm in diameter. It consists of the swollen tip of a thin-walled funnel–shaped hypha, which is about 75 mm in diameter at the apex and widens at the point of attachment. The saccule empties and collapses with spore maturity.

^{*} Current address for correspondence

Dr Sharda W Khade, Darshan Apartments, IInd floor, Vidhyanagar Colony, Carenzalem, Panaji, Goa - 403 002, India

The spore is yellowish brown to reddish brown, globose to subglobose, $210-237 \times 350-400 \mu m$ in diameter. The spore surface is uniformly pitted with round to oblong or occasionally irregular depressions $(6-10 \times 4-16 \mu m$ in diameter) with rounded bottoms, separated by ridges $1-12 \mu m$ broad. The outer spore wall is yellowish or reddish brown, $11-15 \mu m$ thick, with an adherent but separable, hyaline inner layer that is 3 mm thick. The spore contains small hyaline guttules with fine, tapering hyphae subtending below the point of attachment.

Distinguishing feature: Spore surface is uniformly pitted with round to oblong or occasionally irregular depressions.

Distribution: Recorded from Collem (37% frequency of occurrence), Quepem and Valpoi (33% and 50% frequency of occurrence, respectively).

Association: Found in association with *C. papaya* L. plants from the Western Ghats, plateaus of South Goa, and the Western Ghats of North Goa, India.

3 Acaulospora mellea Spain and Schenck

Spores were formed singly in soil, borne laterally on the neck of a sporiferous saccule. The saccule is globose, $90-100 \mu m$ in diameter, and consists of the swollen tip of thin-walled hyphae. The saccule is white, emptying its contents during spore

formation, which results in a transparent to hyaline receptacle attached to the spore. The spores are honey-coloured to yellow-brown, globose to subglobose (Figure 2),

Figure 2 A crushed spore of *Acaulospora mellea* (× 200).

96–130 × 78–92 μ m in diameter, ellipsoidal, 96–130 × 78–92 μ m in diameter. The spore wall 6–8 μ m thick, consisting of three separable walls. The outermost wall (wall 1) is yellowish brown to dark brown, 2–6 μ m thick, laminate, inseparable from the middle wall (wall 2), which is 0.5 μ m thick. Wall 3 is hyaline to light yellow and 0.5–1 μ m thick. Walls 3, 4, and 5 are membranous.

Distinguishing feature: Outer spore wall laminated.

Distribution: Recorded from Colva with 16.66%, Valpoi with 25%, Kodar with 12.5%, and Old Goa with 25% frequency of occurrence, respectively.

Association: Found in association with *C. papaya* L. plants from Western Ghats and plateaus and coastal areas of Goa, India.

4 Acaulospora myriocarpa Spain, Sieverding, and Schenck

Spores were formed singly in soil, borne on a short pedicel 4–8 μ m long and 3–6 μ m wide, terminating in globose terminus of 47–65 μ m in diameter. The spores are hyaline to yellow, globose to subglobose, 104–114 × 80–96 μ m in diameter, with reticulate spore content (Figure 3). The spore wall structure is of three walls in one group. Wall 1 is rigid

(0.75–2 μ m thick), wall 2 is rigid (0.3– 1.5 μ m thick), and wall 3 is membranous (<0.3 μ m thick) and is closely appressed to wall 2.

Distinguishing feature: Spore hyaline with single wall group and reticulate content. **Distribution:**

Recorded from Old

Goa with 100% and

Figure 3 A globose hyaline spore of *Acaulospora myriocarpa* with reticulate content (× 1000)

Valpoi with 37.5% frequency of occurrence, respectively.

Association: Found in association with *C. papaya* L. plants from Western Ghats and coastal areas of Goa, India.

5 Acaulospora nicolsonii Walker, Reed, and Sanders

Spores were formed singly in soil, laterally on the neck of the sporiferous saccule that collapses after the spores mature. The saccule is hyaline to white, globose, and 160-200 µm in diameter. The spores are hyaline to pale yellowish brown, globose to subglobose (Figure 4), $80-100 \times 100-120 \ \mu m$ in diameter, attached to the saccule by a slightly raised collar (2-4 µm wide). The outer, brittle spore wall group (Group A) (walls 1–3) encloses the inner membranous wall (Group B) (wall 4). Wall group A has an outer thin, hyaline evanescent wall (wall 1), $(0.5-1 \ \mu m \text{ thick})$, tightly adherent to a thick, brittle, hyaline to pale yellowish brown laminated wall (wall 2). This wall is $3-10 \mu m$ thick with up to 13 sub-equal laminae, enclosing a loosely adherent, pale yellow, brittle, unit wall, and $0.5-1.5 \mu m$ thick (wall-3). Wall 1 is smooth or roughened as it breaks up and sloughs, leaving

granular fragments attached to wall 2 which may crack in an irregular network. The inner wall (Group B, wall 4) is very thin, hyaline, and membranous $(<0.5 \ \mu m)$. The spore contents appear vacuolated due to the presence of many oil droplets, but later becoming

Figure 4 A spore of *Acaulospora nicolsonii* (× 400).

reticulate as the droplets apparently coalesce.

Distinguishing feature: Spore wall brittle and laminated.

Distribution Recorded from Colva with 16.66%, Valpoi with 12.50%, Kodar with 37.5%, and Old Goa with 12.5% frequency of occurrence, respectively.

Association: Found in association with *C. papaya* L. plants from Western Ghats, plateaus, and coastal areas of Goa, India.

6 Acaulospora scrobiculata Trappe

Spores were formed singly in soil, and are sessile, borne laterally on a wide, thin-walled, hyaline hypha that terminates nearby in a thin-walled globose sporiferous saccule of 100–160 μ m in diameter (Figure 5A). The saccule becomes empty and collapses with spore maturity. The spore is subhyaline in the early stages and turns light olive to light brown at maturity (Figure 5A). It is globose to broadly ellipsoid, 100–240 × 100–220 μ m in area. The spore surface is evenly pitted with depressions that are 1–1.5 × 1–3 μ m in size (Figure 5C), separated by ridges 2–4 μ m thick. The mouths of the depressions are circular to elliptical or occasionally linear to Y–shaped (Figure 5D).

The spore wall is $4-8.5 \ \mu m$ thick and consists of four layers: a rigid, pitted, outer layer, $3-6 \ \mu m$ thick and three inner smooth layers (<1 μm thick) (Figure 5B). The spore contains small, relatively uniform guttules.

Distinguishing feature: The spore surface is evenly pitted with depressions.

Distribution: Recorded from Collem with 100% frequency of occurrence and from Valpoi, Kodar, Old Goa, and Colva with 62.5% frequency of occurrence.

Figure 5 (a) A crushed spore of *Acaulospora scrobiculata* attached to sporiferous saccule (Ss) showing its contents (×100) (b) A portion of spore of *Acaulospora scrobiculata* showing the wall layers (× 200) (c) A portion of spore surface evenly pitted with depressions (×200) (d) Spore surface evenly pitted with polygonal shaped depressions separated by ridges (× 1000).

Association: Found in association with *C. papaya* L. plants from Western Ghats, plateaus and coastal area of Goa, India.

7 Acaulospora spinosa Walker and Trappe

Spores were formed singly in soil, laterally borne on the neck of a sporiferous saccule. The saccule is globose, approximately the same size as the spore. The spore consists of the swollen tip of a thinwalled, funnel-shaped to cylindrical hypha. The spore is attached by a collar, $8-15 \mu m$ broad, to the side of the hypha. The saccule empties and collapses by spore maturity. The spores are hyaline, dull yellowish brown (Figure 6) to dark reddish brown, globose to subglobose, and 100–150 \times 100–180 μm in diameter. The spore surface is crowded with numerous blunt spines that are 1–4 μ m high and 1 μ m in diameter at the polygonal base, tapering to $0.5 \ \mu m$ at the tip. The spines are separated by $\pm 0.2 \ \mu m$, sometimes adhering in lines to form an irregular, partial reticulum on parts of the spore surface. The spore wall is three layered. The outer layer is yellowish brown to reddish brown, $4-10 \ \mu m$ thick and contains spines. It encloses two membranous hyaline walls, each $0.2-1 \ \mu m$ thick.

Distinguishing

feature: The spore surface is ornamented with crowded with numerous blunt spines with polygonal bases. **Distribution**: Recorded from Collem with 83.33%, Quepem and Colva with 50%. Kodar with 37.5%, and Old Goa with 87.58%-100% frequency of occurrence.

Figure 6 Crushed spore of *Acaulospora spinosa* with spore surface crowded with blunt spines (× 400)

Association: Found in association with *C. papaya* L. plants from Western Ghats, plateaus and coastal area of Goa, India.

8 Acaulospora splendida Sieverding, Chaverri, and Rojas

The spores were formed singly in soil, laterally borne on the neck of sporiferous saccule. The saccule is broadly ellipsoidal or irregular in shape, $160-300 \times 150-200 \mu m$ in diameter. It collapses but usually remains attached to the spore after its formation. The spores are hyaline, light yellow to brown, and $150-250 \mu m$ in diameter. The five spore walls are divided into two groups (A and B), which are 2.5–5 μm thick. Wall 3 of group B is finely wrinkled, allowing the flow of oily spore content (Figure 7).

Distinguishing feature: The spore consists of five walls in two groups (A and B) with wall 3 of group B finely wrinkled allowing the flow of oily spore content.

Distribution: Recorded from Collem, rare in occurrence (12.5%).

Association: Found in association with *C. papaya* L. plants from Western Ghats of Goa, India.

Bibliography

Schenck N C and Perez Y (eds). 1990 *Manual for identification of VA Mycorrhizal fungi* Gainesville, USA: INVAM, University of Florida

Figure 7 Crushed spore of *Acaulospora splendida* with finely wrinkled wall 3 of Group B allowing the flow of oily spore content (× 1000)

Research finding papers

Interactions between *Acaulospora* and *Azospirillum* and their synergistic effect on rice growth at different sources and regimes of soil phosphorus

S Ahanthem and D K Jha*

Department of Botany, Gauhati University, Guwahati -781 014, Assam, India

Introduction

Plants and AM (arbuscular mycorrhizal) associations are common in natural and agroecosystems. AMF (arbuscular mycorrhizal fungi) are considered to be essential for increasing the sustainability of agricultural systems (Gianinazzi and Schüepp 1994). In agricultural soils, they are probably the most abundant fungi, accounting for $\approx 50\%$ of the soil microbial biomass (Olsson, Thingstrup, Jakobsen, et al. 1999). They represent the most efficient nutrient uptake facilitators, particularly in nutrient-deficient soils of tropical regions. The ability of AMF to enhance host-plant uptake of relatively immobile nutrients, in particular phosphorus and zinc, (Khaliq and Sanders 2000) is well documented. In addition, they affect and improve the disease fighting ability of plants (Graham 2001). These fungi have a wide range of applications in sustainable agricultural systems (Schreiner and Bethlenfalvay 1995)

The rhizosphere colonizing PGPR bacteria like *Azotobactor, Azospirillum,* and others produce substances that stimulate plant growth. Bacterial phytohormone production and nitrogen fixation are recognized as processes involved in plant growth promotion by *azospirilli*, leading to better root development and enhanced water and mineral uptake (Steenhoudt and Vanderleyden 2000; Dobbelaere, Croonenborghs, Thys, *et al.* 2001). *Azospirillum* inoculation increased the yield of cereals (Kapulnik, Sarig, Nur, *et al.* 1981). Inoculation of host by AMF and *Azospirillum* increased plant growth (Barea, Bonis, and Olivares 1983; Subba Rao, Tilak, and Singh 1985) in nitrogen- and phosphorus-deficient soils.

Phosphorus is a costly primary plant nutrient, since the manufacture of phosphorus-fertilizers requires phosphorus-rich rock, sulphur, and energy (Sharma and Prasad 2003). It is also a major macronutrient for all organisms and serves multiple functions. The use of microbial inoculants such as AMF and *Azospirillum* would enable us to reduce the

6

application of fertilizers, thereby justifying sustainable environmental requirements with a possible cost benefit. The AMF inoculants might also reduce the inorganic fertilizer inputs and sustain plant productivity in agriculture (Mc Gonigle 1988). Mohammad, Mitra, and Khan (2004) reported that mycorrhiza-inoculated plants grew better and yielded more at lower levels of phosphorus fertilizer.

In Assam, rice is the principal grain crop, which occupies 96% of the total area under cereal cultivation (Anonymous 2001). There have been several investigations on the beneficial effects of AMF on rice (Gupta and Ali 1993; Secilia and Bagyaraj 1994) but only a few have been carried out on the interaction between *Azospirillum*, VAM (vesicular arbuscular mycorrhiza), and rice (Subba Rao, Tilak, Lakshmikumari, *et al.* 1979). Relatively little is known about the effect of *Azospirillum* on AM fungal colonization and consequently crop growth and yield. This paper investigates the role of the tripartite association between *Acaulospora, Azospirillum*, and rice in phosphorus nutrition, and growth and yield of rice at different phosphorus levels.

Materials and methods

Collection and treatment of soil

The test soil was collected from the Botanical Garden, Department of Botany, Gauhati University, Guwahati, India. The soil, which had a pH of 5.77, phosphorus (total) 0.12%, nitrogen (total) 0.106%, and potassium 1.3 ppm, was sieved (4 mm) and mixed with building sand in 2:1 ratio. This sand-soil mixture was steam sterilized at 1 kg/ cm² for 1 h. Sterilization was repeated twice with an interval of 24 h in between. Earthen pots, 20 cm in diameter, with a drainage hole were filled with this soil-sand mixture.

The soil was amended with single superphosphate and tricalcium phosphate (mg per pot) and mixed thoroughly. Applications of phosphorus were equivalent to 0 mg, 25 mg, 50 mg, and 75 mg (per pot).

* E-mail: dkjhabot07@gmail.com, dkjha_203@yahoo.com, dkjha@gauhati.ac.in

Host plant and inoculation with symbionts

Rice plant (*Oryza sativa* L. var. Lachit) was used as the test plant and seeds were collected from the Department of Agriculture, Government of Assam. The seeds were surface sterilized with 1%–2% sodium hypochlorite for 1 min followed by 70% alcohol for 30 s and washed several times with double distilled sterilized water. The surface sterilized seeds were soaked in sterile water and then germinated on a cotton cloth. The germinated seeds were then sown on sterilized sand in trays. The mycorrhizal inocula consisted of spores, soil, and infected root fragments. Each mycorrhizal pot received 10 g inoculum at 2 cm below the soil surface. The non-mycorrhizal pots received the same quantity of autoclaved inoculum.

Azospirillum isolated on nitrogen-free Nfb media were enriched on nutrient media before it was used. After 24 h, the cells were collected by centrifugation at 2000 rpm for 20 min and then suspended in $\frac{1}{4}$ -strength Ringer's solution so as to get 5×10^5 cells/ml. Each Azospirillum treated pot obtained 3 ml of this suspension.

Growth conditions

The pot experiment was conducted in a net house at Gauhati University, Guwahati, India, under natural conditions. Plants were watered, up to saturation level, daily. Throughout the whole experiment the plants received basal nutrient solution twice. The experiment was carried out from August to November 2005.

Colonization of plants and their growth performance

Rice plants with intact root systems were carefully excavated from each pot at the end of the experiment. The percentage of root length colonized by VAM fungi was estimated by examining the stained root samples (Koske and Gemma 1989) microscopically (Brundrett, Piche, and Peterson 1984). Gerdemann and Nicolson's (1963) method was followed for counting VAM spores (50 g/ads) in the soil. At each harvest, the shoot length was measured. The rice plants were dried at 60 °C for 48 h, cooled in a dessicator, and their shoot and root dry weight was determined.

Determination of plant nutrient concentration

The shoot phosphorus (%) and nitrogen content (%) was determined by using ascorbic acid procedure (Okalebo, Gathua, and Woomer 1993)

and indophenol blue method (Allen 1974) respectively.

Statistical analysis

Results were analysed by two-way and three-way analysis of variance and the significance was determined according to the least significant difference test (Gomez and Gomez 1984). The experiment consisted of two phosphorus sources at four soil phosphorus concentrations with (1) Acaulospora, (2) Azospirillum, (3) Acaulospora and Azospirillum, and (4) without both Acaulospora and Azospirillum. The 32 soil treatments were replicated three times for a total of 96 pots. The experiment comprised of a fully crossed $4 \times 4 \times 2$ factorial split plot randomized block design.

Results and discussion

Shoot dry biomass and height of plants strongly depended on phosphorus application and mycorrhizal colonization (Tables 1 and 2). The mycorrhizal plants grew better at low soil phosphorus addition, their non-mycorrhizal counterparts, however, required more phosphorus to attain the same growth. Highly significant F value (F_{9 24}=209.177, phosphorus<0.01) obtained for the interaction effect between phosphorus and microbial applications show that the responses of plant dry biomass to microbial inoculations were not same at different rates of phosphorus and, similarly, that phosphorus responses differed between inoculated and non-inoculated plants. The highly significant variation in dry biomass between inoculated and uninoculated plants (Table 2) revealed that the presence or absence of both the microorganisms affected the dry biomass irrespective of phosphorus doses. The results indicate the influence of microbial inoculants in reducing the inorganic fertilizer demand of control by 50%. Biomass also differed significantly between the same or different treatments at the same level between the SSP and TCP fertilization (Table 2). The present results together with previous reports (Rubio, Borie, Schalchli, et al. 2003) clearly indicated that inoculation of plants with AMF and PGPR-enhanced dry matter (Table 2). Non-inoculated plants always had significantly lower dry weights than plants colonized by AMF indicating that rice crop was positively responsive to colonization by AMF. This was also supported by the higher dry weights obtained for the plants colonized by AMF and Azospirillum than for non-inoculated plants (Table 2). The results also indicate that plants grew better on phosphorus fertilized than non-fertilized soils.

Mycorrhizal inoculation responded more on TCP treated soils as compared to the soluble SSP added soils. This is in agreement with the earlier works (Rubio, Borie, Schalchli, *et al.* 2003). Dual inoculation of VAM and fluorescent *Pseudomonas* sp. at the pre-transplant stage of rice significantly increased their biomass over corresponding singly inoculated ones (Dhillion 1992). The positive influence of dual inoculation may be due to the phytohormones produced by the symbionts for additional growth in colonized plants (Barea, Bonis, and Olivares 1983; Tien, Gaskins, and Hubbell 1979), and stimulation of mycorrhizal

Table 1Effect of Acaulospora and Azospirillum on plantheight (cm) at two different sources and levels of phosphorusfertilization

	SSP (mg per	r pot)		TCP (mg per pot)			
Treatment	00.00	25.00	50.00	75.00	25.00	50.00	75.00
Control Acaulospora Azospirillum Acaulospora + Azospirillum	62.00 67.00 67.00 65.00	62.00 66.00 70.00 70.00	63.00 68.00 72.00 68.00	64.00 69.00 74.00 69.00	71.00 72.00 71.00 66.00	70.00 70.00 69.00 65.00	68.00 67.00 67.00 64.00

Data average of three replications

 $LSD_{0.05} = 1.406$; $LSD_{0.01} = 1.906$ for comparison between two treatment means averaged over all phosphorus sources and levels $LSD_{0.05} = 2.813$; $LSD_{0.01} = 3.813$ for comparison between two treatment means averaged over all phosphorus sources at the same or different phosphorus levels

 $LSD_{_{0.05}} = 3.239$; $LSD_{_{0.01}} = 4.350$ for comparison between two phosphorus sources at the same combination of phosphorus level and treatment

Table 2 Effect of Acaulospora and Azospirillum on shootbiomass at two different sources and levels of phosphorusfertilization

	SSP				ТСР	ТСР			
	(mg per pot)					(mg per pot)			
Treatment	00.00	25.00	50.00	75.00	25.00	50.00	75.00		
Control	5.30	6.04	7.29	6.20	5.60	5.65	6.00		
Acaulospora	5.95	7.26	6.12	5.86	6.07	7.35	6.40		
Azospirillum	5.45	6.30	6.90	8.20	6.09	7.40	7.26		
Acaulospora + Azospirillum	6.08	7.30	7.00	7.20	7.23	7.42	7.30		

Data average of three replications

 $LSD_{_{0.05}}$ = 0.103; $LSD_{_{0.01}}$ = 0.139 for comparison between two treatment means averaged over all phosphorus sources and levels

 $LSD_{0.05} = 0.205$; $LSD_{0.01} = 0.278$ for comparison between two treatment means averaged over all phosphorus sources at the same or different phosphorus levels

 $LSD_{_{0.05}}$ = 0.281; $LSD_{_{0.01}}$ = 0.377 for comparison between two phosphorus sources at the same combination of phosphorus level and treatment

roots by the bacteria (Balota, Lopes, Hungria, *et al.* 1995) which otherwise could be achieved by the use of fertilizers on non-mycorrhizal plants (Maria and Justo 1988). The non-mycorrhizal plants responded more to SSP-fertilization than the mycorrhizal ones (Jha, Sharma, and Mishra 1993).

Plants had significantly highest proportion (F=491.76, phosphorus<0.01) of root length colonized by Acaulospora sp. than colonized by both Acaulospora sp. and Azospirillum sp. at all the regimes of insoluble phosphorus (Figure 2). However, this proportion of root length colonized by *Acaulospora* sp. in soil supplemented with SSP was significantly lower than those colonized by both the inoculants (Figure 1). The percentage of total root infected by Acaulospora sp. decreased with increase in phosphorus concentration. The pots given phosphate had lower intensity of infection than their respective control pots not supplied with phosphorus of SSP source. Mycorrhizal root infection in plants also decreased with the increase in phosphorus level in both the phosphorus sources. This is in accordance with the earlier works that found that phosphorus addition to plant by soil (Jha, Sharma, and Mishra 1993; Thingstrup, Rubæk, Sibbesen et al. 1998) or by foliar application decreased VAM colonization. The number of mycorrhizal spores decreased significantly with increasing soluble phosphorus-application (Figure 1) as reported by Thompson, Robson, and Abbot (1992); Rubio, Borie, Schalchli, et al. (2003); and Mohammed, Mitra, and Khan (2004).

There was significant difference in plant height amongst the treatments at both the sources and all levels of phosphorus fertilization (Table 1). At both the sources of phosphorus, with regard to plant height, the non-mycorrhizal and non-PGPR plants responded more to phosphorus fertilization. The growth of mycorrhizal and *Azospirillum* inoculated plants was greater at low phosphorus application than the non-mycorrhizal and without *Azospirillum* inoculated plants that required more phosphorus to attain approximately the same height. At both the sources of phosphorus applications, plants inoculated with *Acaulospora* sp. attained more height than plants inoculated either with *Azospirillum* or both *Acaulospora* sp. and *Azospirillum*.

Dually inoculated seedlings possessed higher shoot phosphorus concentration (Table 3) than those with only *Azospirillum* or non-mycorrhizal only when no phosphorus was added to soil. The ANOVA of shoot phosphorus concentration revealed significant effect of phosphorus level ($F_{3,6}$ =12.40, phosphorus<0.01), treatments ($F_{3,24}$ =33.22, phosphorus<0.01) and phosphorus source ($F_{1,32}$ =10.78, phosphorus<0.01) on shoot phosphorus concentration.

Figure 1 Fitted line plot (regression) of plant phosphorus concentration (mg per g) vs root colonization (%) of *Acaulospora* and dual inoculated plants grown on different sources and concentration of soil phosphorus

Table 3Mycorrhizal spore population (50 g/ads) in ricerhizosphere as affected by Acaulospora, Azospirillum, and differ-ent sources and levels of soil phosphorus

	SSP (mg pe	er pot)		TCP (mg per pot)			
Treatments	00.00	25.00	50.00	75.00	25.00	50.00	75.00
Control	000	000	000	000	000	000	000
Acaulospora	106	170	138	111	143	164	183
Azospirillum	000	000	000	000	000	000	000
Acaulospora +Azospirillum	121	230	185	117	170	209	240

Data average of three replications

 $LSD_{_{0.05}}$ = 0.737; $LSD_{_{0.01}}$ = 0.999 for comparison between two treatment means averaged over all phosphorus sources and levels

 $LSD_{_{0.05}}$ = 1.474; $LSD_{_{0.01}}$ = 1.998 for comparison between two treatment means averaged over all phosphorus sources at the same or different phosphorus levels

 $LSD_{0.05} = 2.337$; $LSD_{0.01} = 3.139$ for comparison between two

phosphorus sources at the same combination of phosphorus level and treatment

 Table 4
 Mycorrhizal dependency (%) of Oryza sativa as affected by Acaulospora, Azospirillum, and different sources and levels of soil phosphorus

	SSP			ТСР			
Treatments	00.00	25.00	50.00	75.00	25.00	50.00	75.00
Control Acaulospora Azospirillum Acaulospora	00 53 00 71	00 42 00 64	00 30 00 49	00 27 00 38	00 67 00 63	00 62 00 47	00 46 00 34
+ Azospirillum	71	04	70	50	00	-11	54

Data average of three replications

 $LSD_{_{0.05}}$ = 0.793; $LSD_{_{0.01}}$ = 1.074 for comparison between two treatment means averaged over all phosphorus sources and levels

 $LSD_{_{0.05}}$ = 1.586; $LSD_{_{0.01}}$ = 2.149 for comparison between two treatment means averaged over all phosphorus sources at the same or different phosphorus levels

 $LSD_{_{0.05}}$ = 3.031; $LSD_{_{0.01}}$ = 4.072 for comparison between two phosphorus sources at the same combination of phosphorus level and treatment

Levels of phosphorus applications (F = 19.97, phosphorus<0.01) (Table 4) and presence or absence of microbial inoculants significantly influenced the total number of spores produced in the rice rhizosphere 50 per g soil. Inoculation of plants with *Azospirillum* stimulated sporulation of mycorrhizal fungi.

A positive but insignificant correlation [r = 0.209 (SSP) and r = 0.183 (TCP)] between percentage root colonization and biomass was obtained for plants inoculated with *Acaulospora* sp. and the correlation was negative [r = -0.613 (SSP) and r = -0.728 (TCP)] for plants inoculated with both *Acaulospora* sp. and *Azospirillum* growing on soils amended with SSP. A negative correlation was

10

Table 5 Effect of *Acaulospora* and *Azospirillum* on shoot phosphorus concentration (mg/g) at two different sources and levels of phosphorus fertilization

	SSP		ТСР		
Treatments	00.00 25.00	50.00 75.00	25.00	50.00 75.00	
Control Acaulospora Azospirillum Acaulospora + Azospirillum	0.153 0.197 0.168 0.228 0.162 0.216 0.182 0.24	0.226 0.23 0.25 0.275 0.26 0.28 0.28 0.288	0.175 0.248 0.185 0.263	0.183 0.157 0.269 0.273 0.248 0.251 0.27 0.285	

Data average of three replications

 $LSD_{0.05} = 0.002$; $LSD_{0.01} = 0.003$ for comparison between two treatment means averaged over all phosphorus sources and levels

 $LSD_{0.05} = 0.004$; $LSD_{0.01} = 0.005$ for comparison between two treatment means averaged over all phosphorus sources at the same or different phosphorus levels

 $LSD_{_{0.05}}$ = 0.006; $LSD_{_{0.01}}$ = 0.008 for comparison between two phosphorus sources at the same combination of phosphorus level and treatment

obtained between percentage root colonization and plant phosphorus-content when plants were growing in soil amended with SSP (r = -0.975 for Acaulospora sp. and -0.926 for Acaulospora sp. and Azospirillum). However, in TCP fertilized plots, *Acaulospora* sp. inoculated plants correlated positively but insignificantly (r = 0.109). These results suggest that growth performance of rice can be reasonably improved by mycorrhizal colonization. It is also clear from the results that the combined microbial inoculations and their synergistic response can be exploited for increasing the crop productivity with minimum input of inorganic fertilizers. This, however, would require assessment of selected microorganisms with specific soil plant combinations to ascertain their growth stimulation ability.

References

Allen S E. 1974

Chemical Analysis of Ecological Materials New Delhi: Blackwell Scientific Publications

Anonymous. 2001 Statistical Hand Book, Assam

Guwahati: Directorate of Economics and Statistics, Government of Assam. 63 pp.

Balota E L, Lopes E S, Hungria M, Dobereiner J. 1995 Interactions and physiological effects of diazotrophic bacteria and arbuscular mycorrhizal fungi in cassava plants

Pesquisa Agropecuária Brasileira 30: 1335–1345

Barea J M, Bonis A F, and Olivares J. 1983 Interactions between *Azospirillum* and mycorrhizal and their effects on growth and nutrition of maize and ryegrass

Soil Biology and Biochemistry 15: 705-709

Brundrett M C, Piche Y, and Peterson R L. 1984 A new method for observing the morphology of Vesicular Arbuscular mycorrhizae *Canadian Journal of Botany* **62**: 2128–2134

Dhillion S S. 1992 **Dual inoculation of pre-transplant stage rice** *Oryza sativa* L. Plants with indigenous vesicular arbuscular mycorrhizal fungi and fluorescent *Pseudomonas* sp. *Biology and Fertility of Soils* 13: 147–151

Dobbelaere S, Croonenborghs A, Thys A, Ptacck D, Vanderleyden J, Dutto P, Labendera-Gonzalez C, Coballero-Mellado J, Aguirre J F, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y. 2001 **Responses of agronomically important crops to inoculation with** *Azospirillum Australian Journal of Plant Physiology* **28**: 871–879

Gerdemann J W and Nicolson T H. 1963

Spores of mycorrhizal Endogone extracted from soil by wet sieving and decanting *Transaction of British Mycological Society* **46**: 235–244

Gianinazzi S and Schüepp H. 1994 *Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems* Basel: Birkhauser Verlag. 226 pp.

Gomez A K and Gomez A A. 1984 **Statistical Procedures for Agricultural Research** (2nd edn.) New York: John Wiley and Sons [An International Rice Research Institute book]

Graham J H. 2001 What do root pathogens see in mycorrhizas? *New Phytol*ogist **148**: 357–359

Gupta N and Ali S S. 1993 VAM inoculation for wetland rice Mycorrhiza News 5: 5–6

Jha D K, Sharma G D, and Mishra R R. 1993 **Mineral nutrition in the tripartite interaction between** *Frankia, Glomus* and *Alnus* at different soil **phosphorus regimes** *New Phytologist* **123**: 307–311

Kapulnik Y, Sarig S, Nur I, Okon Y, Kigel J and Henis Y. 1981

Yield increases in summer cereal crops of Israel in fields inoculated with *Azospirillum Experimental Agriculture* **17**: 179–187

Khaliq A and Sanders F E. 2000 **Effect of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley** *Soil Biology and Biochemistry* **32**: 1691–1696

Koske R E and Gemma J N. 1989 A modified procedure for staining roots to detect VA mycorrhizas Mycological Research 92: 486–505 Maria J S and Justo A. 1988 **P absorbed from soil by mycorrhizal red clover plants as affected by soluble P fertilization** *Soil Biology and Biochemistry* **20**: 61–67

Mc Gonigle T P. 1998 A numerical analysis of published field trials with vesicular arbuscular mycorrhizal fungi Functional Ecology 2: 473–478

Mohammad A, Mitra B, and Khan A G. 2004 Effects of sheared-root inoculum of *Glomus intraradices* on wheat at different phosphorus levels in the field

Agriculture Ecosystem and Environment 103: 245–249

Olsson P A, Thingstrup I, Jakobsen I and Bääth E. 1999 Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field Soil Biology Biochemistry **31**: 1879–1887

Okalebo J R, Gathua K W, and Woomer P L. 1993 Laboratory Methods of Plant and Soil Analysis: a working manual *Technical Bulletin No. 1* [Soil Science Society, East Africa]

Rubio R, Borie F, Schalchli C, Castillo C, Azcón R. 2003 Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation Applied Soil Ecology 23: 245–255

Schreiner R P and Bethlenfalvay G J. 1995 **Mycorrhizal interactions in sustainable agriculture** *Critical Reviews in Biotechnology* **15:** 271–287

Secilia J and Bagyaraj D J. 1994 Selection of efficient vesicular arbuscular mycorrhizal fungi for wetland rice-a Preliminary screening Mycorrhiza 4: 265–268

Sharma S N and Prasad R. 2003 Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with di-ammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria Journal of Agricultural Science 141: 359–369

Steenhoudt O and Vanderleyden J. 2000 *Azospirillum,* a free-living nitrogen fixing bacterium closely related with grasses: genetic, biochemical and ecological aspects *FEMS Microbiology Review* 24: 487–508

Subba Rao N S, Tilak K V B R, Lakshmikumari M, Singh C S. 1979 **Response of a few economic species of graminaceous plants to inoculation with** *Azospirillum brasilense Current Science* **3**: 133–134 Subba Rao N S, Tilak K V B R, and Singh C S. 1985 Synergistic effect of vesicular-arbuscular mycorrhizas and *Azospirillum brasilense* on the growth of barley in pots

Soil Biology and Biochemistry 17: 119–121

Thingstrup I, Rubæk G, Sibbesen E, Jakobsen I. 1998 Flax (*Linum usitatissimum* L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field *Plant and Soil* 203: 37–46

Thompson B D, Robson A D, and Abbot L K. 1992 The effect of long-term application of phosphorus fertilizer on populations of vesicular arbuscular mycorrhizal fungi in pastures

Australian Journal of Agriculture Research 43: 1131–1142

Tien T M, Gaskins M H, and Hubbell D H. 1979 Plant growth substances produced by *Azospirillum brasilense* and their effect on the growth of Pearl Millet (*Pennistetum americanum* L.) *Applied Environmental Microbiology* **37**: 1016–1024

Bibliography

Graham J H. 2000 Assessing costs of arbuscular mycorrhizal symbiosis in agroecosystems In *Current Advances in Mycorrhizal Research*, pp. 127–140. edited by G K Podila and D D Douds Ir

pp. 127–140, edited by G K Podila and D D Douds Jr Minneapolis: APS Press

Khan M A. 1972 **The effects of vesicular arbuscular mycorrhizal associations on growth of cereals I. Effects on maize growth**

New Phytologist 71: 613–619

Sieverding E. 1991

Vesicular-arbuscular Mycorrhiza Management in Tropical Agrosystems

Eschborn, Germany: Deutsche gesellschaft fur technische Zusammenarbeit (GTZ)

Synergistic effects of AMF and bioformulations on softwood grafting

in jamun (Syzygium cuminii Skeels)

N Devachandra, C P Patil, P B Patil, G S K Swamy, and M P Durgannavar Kittur Rani Channamma College of Horticulture, Arabhavi – 591 310, Karnataka

Introduction

Jamun, also known as Indian black berry, is an indigenous under-exploited fruit of high commercial value. It has recently attained utmost importance as an arid-zone horticultural crop because of its hardy nature, high yielding potential, quality fruits, and nutritive and medicinal properties. The increasing concern about the environment and socio-economic impact of chemical agriculture has led many farmers and consumers to seek organic cultivation. This shift necessitates raising the seedlings/rootstock organically to ensure higher graft-take and subsequent growth for production of organic nursery plants of jamun.

Material and methods

An experiment was conducted at the nursery of the Department of Pomology, Kittur Rani Channamma College of Horticulture, Karnataka, during 2004-06, with three replications in factorially randomized design.

Factor-I: AMF (arbuscular mycorrhizal fungi) (*Sclerocystis dussii, Glomus monosporum, G. intraradices, G. fasciculatum,* and Control-1, that is, non-mycorrhizal)

12

Factor-II: Control-2, that is, without bioformulations, *amrit pani*, microbial consortium and *panchagavya*

The AMF were inoculated to rootstocks at the time of sowing. Mature scions were cured two weeks prior to the grafting day by defoliation in order to activate terminal buds. The AM (arbuscular mycorrhizal) fungal inoculated rootstocks were subjected to softwood grafting four months after sowing. The polybags were watered at weekly intervals for six months after the first week after grafting.

To each polybag, 10 ml of bioformulations (3% concentrated) was applied as soil drenching, immediately after irrigation. Parameters of the grafts, such as graft-take after three months of grafting, graft survival at the sixth month, sprout height, number of leaves, and stionic ratio were recorded.

Stionic ratio =

Diameter of scion above joint (mm) Diameter of rootstock below joint (mm)

Mycorrhiza News 20(2) • July 2008

Results and discussion

Data recorded on graft-take and survival as influenced by AMF and bioformulations are tabulated in Table 1. Among the AMF, *G. fasciculatum* registered significantly highest grafttake (73.33%) and survival (98.80%) followed by *G. intraradices* (graft-take – 65.83% and survival – 98.49%), *G. monosporum* (graft-take – 54.19% and survival – 96.76%), and *S. dussii* (graft-take – 53.75% and survival – 93.45%). Non-mycorrhizal grafts show significantly lower graft-take (44.17%) and survival (87.21%).

Among bioformulations, microbial consortium recorded significantly higher graft-take (63.33%) and survival (98.67%), followed by *panchagavya* (graft-take – 62.67% and survival – 95.84%) and *amrit pani* (graft-take – 54.67% and survival – 94.64%). Grafts

that did not receive bioformulations recorded significantly lower graft-take (52.33%) and survival (90.62%). For graft-take, interaction effects were found to be significant (Table 1). Significantly highest graft-take (83.33%) was noticed in the grafts inoculated with *G. fasciculatum* and supplemented with microbial consortium, which was statistically on par with the *G. fasciculatum* rootstock along with application of *panchagavya* (80.00%). Significantly least graft-take of 26.67% was recorded where neither AMF inoculation was done nor bioformulations were applied (Table 1).

There were significant differences among AMF and bioformulations on sprout length at all stages of growth, that is, DAG (days after grafting). Among the AMF, grafts inoculated with *G. fasciculatum* recorded significantly highest sprout length (8.75, 9.50, 11.63,

Table 1 Effect of AMF and bioformulations on per cent graft-take and survival in jamun

Treatment	Per cent graft success	Per cent graft survival		
Sclerocystis dussii + Control-2	55.00 (47.89)	93.94 (81.63)		
S. dussii + amrit pani	53.33 (46.93)	87.27 (72.77)		
S. dussii + microbial consortium	63.33 (52.77)	100.00 (90.05)		
S. dussii + panchagavya	43.33 (41.18)	92.59 (80.67)		
Mean for S. dussii	53.75 (47.19)	93.45 (81.28)		
Glomus monosporum + Control-2	55.67 (48.86)	94.44 (82.01)		
G. monosporum + amrit pani	43.33 (41.18)	92.59 (77.06)		
G. monosporum + microbial consortium	50.00 (45.02)	100.00 (90.05)		
G. monosporum + panchagavya	66.67 (54.78)	100.00 (90.05)		
Mean for G. monosporum	54.17 (47.46)	96.76 (84.79)		
Glomus intraradices + Control-2	53.33 (46.93)	93.94 (78.34)		
G. intraradices + amrit pani	66.67 (54.78)	100.00 (90.05)		
G. intraradices + microbial consortium	70.00 (56.87)	100.00 (90.05)		
G. intraradices + panchagavya	73.33 (58.96)	100.00 (90.05)		
Mean for G. intraradices	65.83 (54.39)	98.49 (87.12)		
Glomus fasciculatum + Control-2	70.00 (56.87)	95.21 (79.69)		
G. fasciculatum + amrit pani	60.00 (50.81)	100.00 (90.05)		
G. fasciculatum + microbial consortium	83.33 (65.99)	100.00 (90.05)		
G. fasciculatum + panchagavya	80.00 (63.47)	100.00 (90.05)		
Mean for G. fasciculatum	73.33 (59.29)	98.80 (87.46)		
Control-1 + Control-2	26.67 (31.09)	75.56 (60.57)		
Control-1 + amrit pani	50.00 (45.02)	93.33 (81.19)		
Control-1 + microbial consortium	50.00 (45.02)	93.33 (81.19)		
Control-1 + panchagavya	50.00 (45.02)	86.50 (68.84)		
Mean for Control-1	44.17 (41.54)	87.21 (72.95)		
Mean for Control-2	52.33 (46.33)	90.62 (76.45)		
Mean for <i>amrit pani</i>	54.67 (47.75)	94.64 (82.2)		
Mean for microbial consortium	63.33 (53.13)	98.67 (88.28)		
Mean for panchagavya	62.67 (52.68)	95.84 (83.93)		
For comparing the means of	S Em± CD at 5%	S Em± CD at 5%		
AMF	0.842 2.390	1.750 4.967		
Bioformulation	0.752 2.136	1.563 4.439		
AMF x bioformulation	1.682 4.780	3.495 NS		

[Figures in parenthesis pertain to the angular transformation of data]

Control-1 - non-mycorrhizal; Control-2 - without bioformulations; NS - non-significant; AMF - arbuscular mycorrhizal fungi

and 15.51 cm at 90, 120, 150, and 180 DAG, respectively). Significantly least sprout length was recorded in Control-1 (7.24, 7.87, 10.02, and 13.05 cm at 90, 120, 150, and 180 DAG, respectively). Among the bioformulations, microbial consortium applied grafts recorded significantly maximum sprout length of 8.34, 9.19, 12.15, and 15.86 cm at 90, 120, 150 and 180 DAG, respectively. As interaction effects, significantly highest sprout length was recorded in G. fasciculatum inoculated and supplemented with microbial consortium throughout the growth phases (Table 2). Significantly least sprout length was observed in absolute control (Control-1 + Control-2).

The influence of AMF and bioformulations on the number of leaves in grafts was highly

significant (Table 3). Among AMF, grafts inoculated with G. fasciculatum registered significantly maximum number of leaves. Among bioformulations, significantly highest value was recorded in microbial consortium during 90 and 150 DAG, while *panchagavya* had significantly higher value during 120 and 180 DAG. However, the values of these two treatments were statistically similar at all stages of growth. Grafts inoculated with G. fasciculatum and applied with microbial consortium registered significantly maximum number of leaves (8.00, 10.03, 15.63, and 21.23 at 90, 120, 150, and 180 DAG, respectively). Exclusion of AMF and bioformulations either individually or in combination resulted in significantly least number of leaves (Table 3).

	Sprout length	(cm)		
Treatment	90 DAG	120 DAG	150 DAG	180 DAG
Sclerocystis dussii + Control-2	7.05	7.89	9.56	12.60
S. dussii + amrit pani	7.84	8.29	10.44	13.55
S. dussii + microbial consortium	8.66	9.41	13.65	16.48
S. dussii + panchagavya	8.02	9.00	10.34	14.92
Mean for S. dussii	7.89	8.65	11.00	14.39
Glomus monosporum + Control-2	7.34	7.96	9.62	12.61
G. monosporum + amrit pani	8.00	8.91	10.53	13.56
G. monosporum + microbial consortium	8.32	9.14	12.46	15.93
G. monosporum + panchagavya	8.21	9.23	11.59	15.37
Mean for G. monosporum	7.97	8.81	11.05	14.37
Glomus intraradices + Control-2	7.15	7.92	9.53	12.42
G. intraradices + amrit pani	7.95	8.40	10.59	13.76
G. intraradices + microbial consortium	8.19	9.40	1.39	15.18
G. intraradices + panchagavya	8.11	9.16	11.64	13.60
Mean for G. intraradices	7.85	8.72	10.79	13.74
Glomus fasciculatum + Control-2	7.93	8.59	10.30	13.30
G. fasciculatum + amrit pani	8.58	9.34	11.87	13.95
G. fasciculatum + microbial consortium	9.41	10.16	12.80	18.49
G. fasciculatum + panchagavya	9.07	9.91	11.56	16.28
Mean for G. fasciculatum	8.75	9.50	11.63	15.51
Control-1 + Control-2	6.94	7.46	9.05	12.04
Control-1 + <i>amrit pani</i>	6.86	7.77	10.02	13.30
Control-1 + microbial consortium	7.14	7.84	10.46	13.22
Control-1 + panchagavya	8.01	8.41	10.56	13.66
Mean for Control-1	7.24	7.87	10.02	13.05
Mean for Control-2	7.28	7.97	9.61	12.59

8.54

9.19

9.14

S Em±

0.065

0.058

0.129

CD at 5%

0.183

0.164

0.367

Table 2 Effect of AMF and bioformulations on sprout length of jamun grafts

Control-1 - non-mycorrhizal; Control-2 - without bioformulations; AMF - arbuscular mycorrhizal fungi; DAG - days after grafting

CD at 5%

0.097

0.087

0.197

7.85

8.34

8.28

S Em±

0.034

0.030

0.068

AMF

Bioformulation

AMF x bioformulation

Mean for amrit pani

Mean for panchagavya

Mean for microbial consortium

For comparing the means of

14

13.62

15.86

14.77

S Em±

0.134

0.119

0.267

CD at 5% 0.379

0.339

0.759

10.69

12.15

11.14

S Em±

0.076

0.068

0.153

CD at 5%

0.217

0.194

0.434

Table 3 Effect of AMF and bioformulations on number of leaves on jamun grafts

	Number	r of leaves						
Treatment	90 DAG		120 DAC	3	150 DAG		180 DAG	-
Sclerocystis dussii + Control-2	6.37		8.63		12.60		17.47	
S. dussii + amrit pani	7.07		9.07		12.83		17.47	
S. dussii + microbial consortium	7.53		9.60		14.73		19.47	
S. dussii + panchagavya	7.70		9.60		14.83		19.47	
Mean for S. dussii	7.17		9.23		13.75		18.47	
Glomus monosporum + Control-2	6.33		8.57		13.07		18.53	
G. monosporum + amrit pani	7.04		9.08		14.73		19.40	
G. monosporum + microbial consortium	7.75		9.00		14.50		19.36	
G. monosporum + panchagavya	7.77		9.95		14.80		19.59	
Mean for G. monosporum	7.22		9.30		14.28		19.22	
Glomus intraradices + Control-2	6.90		9.04		14.63		19.80	
G. intraradices + amrit pani	7.02		9.21		14.20		18.33	
G. intraradices + microbial consortium	7.08		9.73		14.37		18.65	
G. intraradices + panchagavya	7.82		9.67		14.43		19.63	
Mean for G. intraradices	7.39		9.41		14.41		19.11	
Glomus fasciculatum + Control-2	6.93		8.63		12.70		17.55	
G. fasciculatum + amrit pani	7.10		9.86		14.90		19.69	
G. fasciculatum + microbial consortium	8.00		10.03		15.63		21.23	
G. fasciculatum + panchagavya	7.90		9.94		14.87		20.63	
Mean for G. fasciculatum	7.48		9.62		14.53		19.78	
Control-1 + Control-2	5.67		8.10		11.77		16.93	
Control-1 + amrit pani	6.03		8.96		12.63		18.43	
Control-1 + microbial consortium	6.10		8.61		12.60		18.07	
Control-1 + panchagavya	5.95		8.72		12.63		18.07	
Mean for Control-1	5.94		8.60		12.41		17.88	
Mean for Control-2	6.44		8.60		12.95		18.06	
Mean for <i>amrit pani</i>	6.85		9.24		13.86		18.66	
Mean for microbial consortium	7.44		9.51		14.37		19.36	
Mean for panchagavya	7.43		9.58		14.31		19.48	
For comparing the means of	S Em±	CD at 5%	S Em±	CD at 5%	S Em±	CD at 5%	S Em±	CD at 5%
AMF	0.054	0.153	0.060	0.170	0.065	0.185	0.088	0.250
Bioformulation	0.048	0.137	0.054	0.152	0.058	0.166	0.079	0.224
AMF x bioformulation	0.011	0.307	0.120	0.340	0.130	0.370	0.176	0.500

AMF - arbuscular mycorrhizal fungi; DAG - days after grafting

The values of the diameter below and above the graft joint and their ratio are presented in Table 4. The AMF had significant influence on graft stem diameter. The diameter below graft union was maximum in *G. intraradices* (8.43 mm). However, the diameter values in *G. fasciculatum*, *S. dussii*, and *G. monosporum* were statistically similar with each other.

The diameter above graft union was maximum in grafts inoculated with *G. fasciculatum* (7.86 mm), which was statistically on par with other AMF. Significantly least diameter below and above graft joint (7.40 and 6.80 mm, respectively) was recorded in uninoculated control when compared to inoculated grafts.

Shivashankar and Iyer (1988) reported that the higher root infection and colonization by AMF

might exert a direct effect on germination, and root and shoot growth in the subsequent stages of plant growth. AMF are known to secrete plant growth regulators like gibberellins (Allen, Moore, and Christensen 1980), auxins, and cytokinins (Edriss, Davis, and Burger 1984). The growth promoting substances in the rhizospheres were taken up by the inoculated seedlings/rootstocks leading to enhanced growth and vigour. Enhancement of plant growth by AM fungal inoculation was also reported by earlier workers in mango (Santosh 2004 and Bassanagowda 2005), citrus (Venkat 2004), papaya (Duragannavar 2005, Kareddy and Rangarajan, 2001), khirni (Sreeramulu, Gowda, and Bagyaraj 1998), and grape (Usha, Mathew, and Singh 2004).

The work carried out on microbiological parameters of *amrit pani*, microbial consortium, and *panchagavya* revealed that they contain a lot of saprophytic bacteria, actinomycetes, fungi, yeasts, nitrogen fixers, phosphorus-solubilizers, growth promoting PGPRs, and biocontrol agents (Santosh 2004). For instance, *panchagavya* works on with cosmic energy and with a production of certain plant growth stimulants such as hormone and enzymes with enormous increase in beneficial microorganisms (Natarajan 2002). In the present study, it was observed that there were synergistic interaction between AMF and bioformulations as evident from the amplified responses due to combined treatments (Tables 1, 2, and 3). The AM fungal inoculation and bioformulation application did not alter the graft compatibility as evident from the stionic ratio (Table 4). Choudhari, Patil, and Mali (1977) categorized the graft compatibility based on the stionic ratio as the ratio ranging between 0.57 and 0.76 indicating typical bottleneck appearance; 0.77 and 0.89 over growth of stock; 0.90 and 0.99 smooth graft union, and above 1.00 slight bulging at union, while 1.01 and above have been classed as over growth of scion. Thus, the grafts resulting from AM inoculation and bioformulation application fall under smooth graft union category (Table 4) and promotion of organic nursery on fruit crops like jamun and others can be done with

Table 4	Effect of AMF	and bioformulations	on diameter of	graft stem	and stionic ratio
---------	---------------	---------------------	----------------	------------	-------------------

	Diamete	er of stem (mm)				
Treatment	Stionic r	ratio	Above ur	nion	Below un	ion
Sclerocystis dussii + Control-2	7.750		8.296		0.937	
S. dussii + amrit pani	7.747		8.405		0.923	
S. dussii + microbial consortium	7.460		8.397		0.887	
S. dussii + panchagavya	6.813		8.089		0.860	
Mean for S. dussii	7.442		8.297		0.902	
Glomus monosporum + Control-2	7.677		8.137		0.943	
G. monosporum + amrit pani	7.488		8.069		0.930	
G. monosporum + microbial consortium	7.860		8.202		0.960	
G. monosporum + panchagavya	7.765		8.041		0.967	
Mean for G. monosporum	7.698		8.112		0.950	
Glomus intraradices + Control-2	7.599		8.274		0.923	
G. intraradices + amrit pani	7.916		8.298		0.953	
G. intraradices + microbial consortium	7.329		8.672		0.847	
G. intraradices + panchagavya	7.624		8.489		0.900	
Mean for G. intraradices	7.617		8.433		0.06	
Glomus fasciculatum + Control-2	7.766		8.279		0.940	
G. fasciculatum + amrit pani	7.673		8.199		0.933	
G. fasciculatum + microbial consortium	8.263		8.770		0.940	
G. fasciculatum + panchagavya	7.756		8.247		0.940	
Mean for G. fasciculatum	7.865		8.374		0.938	
Control-1 + Control-2	6.538		7.172		0.913	
Control-1 + amrit pani	7.113		7.445		0.953	
Control-1 + microbial consortium	6.634		7.514		0.883	
Control-1 + panchagavya	6.894		7.478		0.923	
Mean for Control-1	6.795		7.402		0.918	
Mean for Control-2	7.466		8.032		0.931	
Mean for <i>amrit pani</i>	7.588		8.083		0.939	
Mean for microbial consortium	7.509		8.311		0.903	
Mean for panchagavya	7.370		7.478		0.918	
For comparing the means of	S Em±	CD at 5%	S Em±	CD at 5%	S Em±	CD at 5%
AMF	0.138	0.391	0.176	0.498	0.013	NS
Bioformulation	0.349	NS	0.157	NS	0.012	NS
AMF x bioformulation	0.275	NS	0.350	NS	0.026	NS

NS - non-significant; AMF - arbuscular mycorrhizal fungi

AMF and application of bioformulations like microbial consortia, *panchagavya* or *amrit pani*.

References

Allen M F, Moore T S and Christensen M. 1980 Phytohormone changes in *Bouteloua gracillis* infected by vesicular arbuscular mycorrhizal cytokinin increase in the host plant *Canadian Journal of Botany* 58: 371–374

Bassanagowda. 2005

Synergistic effect of AMF in combination with bioformulations on germination, graft-take, growth, and yield of mango

Dharwad: University of Agricultural Sciences, Dharwd [MSc Thesis submitted to the Department of Horticulture]

Choudhari K G, Patil A V, and Mali V R. 1977

Bud union abnormalities – its relation to citrus dieback Journal of Maharashtra Agricultural Universities **2**(3): 236–239

Duragannavar M P. 2005

Effect of bioformulatins on growth and yield of papaya cv. Red Lady

Dharwad: University of Agricultural Sciences, Dharwad [MSc thesis submitted to the Department of Horticulture]

Edriss M H, Davis R M, and Burger D W. 1984 Influence of mycorrhizal fungi on cytokinin production in Sour orange.

Journal of American Society for Horticultural Sciences **109**(4): 587–590

Natarajan K. 2002 *Panchagavya – a manual* Goa: Other India Press. 40 pp. Santosh. 2004

Enhancement of germination, growth, graft-take, and stress tolerance of mango rootstocks using bioformulations

Dharwad: University of Agricultural Sciences, Dharwad [MSc thesis submitted to the Department of Horticulture]

Shivashankar S and Iyer R. 1988 Influence of vesicular arbuscular mycorrhiza on growth and nitrate reductase activity of black pepper. Indian Phytopathology **41**(3): 428–433

Sreeramulu K R, Gowda V N, and Bagyaraj D J. 1998 Influence of VA mycorrhiza on establishment and growth of khirni (*Manilkara hexandra* (Roxb.) Dub) seedlings

Current Research 27(3): 50–52

Usha K, Mathew R, and Singh B. 2004 Effect of arbuscular mycorrhizal fungi (AMF) on growth, nutrient uptake and yield of grape (*Vitis vinifera* L).

The Karnataka Journal of Horticulture 1(1): 56-60

Venkat. 2004

Exploitation of Rangpur lime as a rootstock for different citrus sp.

Dharwad: University of Agricultural Sciences, Dharwad [MSc thesis submitted to the Department of Horticulture]

Bibliography

Kennedy Z S and Rangarajan M. 2001 Biomass production, root colonization and phosphatase activity by six VA-mycorrhizal fungi in papaya.

Indian Phytopathology 54(1): 72–77

Efficacy of AM fungi in improving the growth performance of *Cyamopsis tetragonoloba* under saline soil conditions

Varun Khare*, Sandeep K Singh, Sudha Singh, and Dr (Ms) H K Kehri** Department of Botany, University of Allahabad, Allahabad – 211 002.

Introduction

Nearly 7% of the world's land is saline due to the presence of excess soluble salts in the soil (Dudal and Purnell 1986). In India, the area with potential salinity is about 20 Mha (million hectares), out of which 7 Mha is severely affected. The presence of an excess amount of salt in soil inhibits the growth of new roots, which is essential for the healthy growth of plants. Because of this, the reclamation programmes of such soils leads to a high mortality of plants and are not economical

for sustainable agriculture (Cantrell and Linderman 2001).

There are conclusive evidences that show the importance of AMF (arbuscular mycorrhizal fungi) in reclamation of such soils. AM (arbuscular mycorrhizal) association protects plants from salt stress by regulating ionic exchange and enhancing nutrient uptake (Hartmond, Schaesberg, Graham, *et al.* 1987; Dixon, Garg, and Rao 1993). The present study was undertaken to evaluate the effect of AMF on the growth and establishment of *Cyamopsis*

* Corresponding author: Phone: 09415877663, e-mail: varunk_2k@rediffmail.com

** Phone: 09335109250, e-mail: kehrihk@rediffmail.com

tetragonoloba (L.) Taub. under varying concentrations of saline soils -25%, 50%, and 75%.

Materials and methods

A soil sample was collected from the site located at Handia, Allahabad, where high salt concentration (pH = 10.2, EC = 4.06 dS/m) has rendered it into an unproductive saline fallow land. This soil was mixed with sterilized sand in a 1:1 ratio and trap culture was maintained on Cenchrus ciliaris for four months to raise mycorrhizal inoculum. After four months Cenchrus roots were assessed for AM colonization by a method proposed by Phillips and Hayman (1970). The percentage AM infection in roots was estimated by the root slide technique (Nicolson 1960). AM fungal spore population in rhizospheric soil was also estimated by the wet sieving and decanting method (Gerdemann and Nicolson 1963). The soil inoculum contained about 35 AM spores/10 g of soil and AM infection level in the Cenchrus root bits was upto 80%.

The experiment was designed under greenhouse conditions and in the following eight series.

- 1. Control (agricultural soil)
- 2. Control (agricultural soil) + AMF
- 3. Agricultural soil + saline soil (3:1)

- 4. Agricultural soil + saline soil (3:1) + AMF
- 5. Agricultural soil + saline soil (1:1)
- 6. Agricultural soil + saline soil (1:1) + AMF
- 7. Agricultural soil + saline soil (1:3)
- 8. Agricultural soil + saline soil (1:3) + AMF

Five pots were maintained under each series and five seeds of *C. tetragonoloba* were sown in each pot. A 300 g soil inoculum was added by the layering method (Menge, Lembright, and Johnson 1977) in conditions 2, 4, 6, and 8 (+ AMF series).

Pre-emergence and post-emergence mortality was recorded for each series. Plants were uprooted at vegetative, flowering, and fruiting stages of growth. The root and shoot biomass was determined after oven drying the samples at 70 $^{\circ}$ C for 72 h. The yield, in terms of dry weight of grains per plant and number of pods per plant, was determined after the harvest.

Results and discussion

In saline soils, AMF successfully colonized the roots of *C. tetragonoloba* (Table 1). Although the level of colonization varied in each series, it was significantly higher in inoculated ones. Earlier reports have also shown an increased AM fungal sporulation and

Table 1 Mycorrhizal intensity in roots and spore population in the rhizosphere of Cyamopsis tetragonoloba

Treatment	AMF sp	AMF spore population (per 10 g soil)				AMF association (% root bits infected)			
	٧	FI	Fr	Av	V	FI	Fr	Av	
Control	34	52	58	48	58	72	74	68	
Control + AMF	76	89	99	88	80	89	89	86	
25% Saline	28	40	43	37	38	51	55	48	
25% Saline + AMF	58	79	85	74	63	73	80	72	
50% Saline	18	23	28	23	30	46	44	40	
50% Saline + AMF	52	79	79	70	57	68	73	66	
75% Saline	6	10	14	10	18	25	63	32	
75% Saline + AMF	48	67	77	64	29	62	62	51	
CD	4.53	4.29	5.60	_	4.33	4.31	4.99	_	

V - vegetative; FI - flowering; Fr - fruiting stages of growth; Av - average; CD - minimum difference required for significance at 5% level

Table 2	Effect of salinity and a	rbuscular mycorrhizal fun	gi on mortality length	n dry weight and vield	of Cvamonsis tetragonoloba
	Encor of Summey and a	ibuseului iliyeeliilizai luli	Si on mortanty, iongu	i, ary weight, and yield	i oi oyumopsis tettugonoloou

	Mortality (%)		Length (cm)		Dry we	Dry weight (g/plant)		Yield	
Treatment	Pre-emergence	Post-emergence	Root	Shoot	Root	Shoot	Ро	GDW	
Control	0.0	0.0	8.1	23.8	0.25	2.67	60	4.1	
Control + AMF	0.0	0.0	9.5	40.3	0.43	4.84	80	5.0	
25% Saline	11.1	0.0	8.1	22.3	0.21	1.48	50	3.5	
25% Saline + AMF	5.6	0.0	6.6	33.1	0.26	2.86	60	3.9	
50% Saline	11.1	5.5	5.9	15.8	0.14	1.34	30	1.4	
50% Saline + AMF	0.0	0.0	6.0	18.3	0.25	1.66	60	2.1	
75% Saline	27.8	8.3	4.9	13.5	0.08	0.58	30	1.4	
75% Saline + AMF	11.1	0.0	5.3	16.8	0.20	1.66	50	2.3	
CD	1.01	0.60	0.91	2.21	0.06	0.49	6.62	0.56	

Po - number of pods/10 plant; GDW - dry weight of grains (g/10 plant); CD- minimum difference required for significance at 5% level

colonization under saline conditions (Aliasgharzadeh, Rastin, Towfighi, *et al.* 2001).

Significant reduction was observed in the mortality rate of mycorrhizal plants in comparison to non-mycorrhizal plants (Table 2). There was also considerable reduction in root and shoot biomass under salt stress conditions. However, AMF inoculation successfully recovered more than 60% suppression (Table 2). The results supported previous findings that mycorrhizal plants grow better than nonmycorrhizal plants under salinity stress (Cantrell and Linderman 2001).

Similar observations were recorded in terms of yield. Significant increase was observed in a number of pods and dry weight of grains per plant (Table 2). Furthermore, the pods obtained from the mycorrhizal plants were found to be healthy whereas those obtained from the non-mycorrhizal plants were smaller, sickle shaped, and without grains.

The data clearly shows that AM fungal inoculation promotes the growth of the plants in saline soil. Improvement in growth may also be regulated by improved nutrient supply (Ojala, Jarell, Menge *et al.* 1983). Absorption of phosphorus and its supply to the root system of the mycorrhizal plant under salt stress condition is a major contribution of AMF (Pfeiffer and Bloss 1988). Mycorrhizal inoculation also enhances magnesium uptake and reduces sodium concentration in plants. This in turn helps in increasing the chlorophyll content and improves the overall growth performance of mycorrhizal plants (Rozema, Asp, Van Diggeln, M-Van Esbrock, Brokeman, and Punte *et al.* 1986; Giri, Kapoor, and Mukerji 2002).

Acknowledgement

The authors are grateful to the Head, Department of Botany, University of Allahabad for providing the library and laboratory facilities. Mr Varun Khare is grateful to the CSIR (Council of Scientific and Industrial Research), New Delhi, for providing him with financial assistance.

References

Aliasgharzadeh N, Rastin NS, Towfighi H, and Alizadeh A. 2001

Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil Mycorrhiza 11: 119–122

Cantrell I C and Linderman R G. 2001 **Preinoculation of lettuce and onion with VA** mycorrhizal fungi reduces deleterious effects of soil salinity

Plant Soil 233: 269-281

Dixon R K, Garg V K, and Rao M V. 1993 Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth *Arid Soil Research and Rehabilitation* 7: 133-144

Dudal R and Purnell M F. 1986 Land resources: salt affected soils Reclamation and Revegetation Research 5: 169

Gerdemann J W and Nicolson T H. 1963 Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting *Transaction of the British Mycological Society* **46**: 235–244

Giri B, Kapoor R, and Mukerji K G. 2002 VA mycorrhizal techniques/VAM technology in establishment of plants under salinity stress conditions. pp. 313–327 In *Techniques in Mycorrhizal Studies*, edited by K G Mukerji, C Manoharachari, and J Singh. Dordrecht: Kluwer Academic Publishers

Hartmond U, Schaesberg N V, Graham J H, Syverten J P. 1987

Salinity and flooding stress effect on mycorrhizal and non-mycorrhizal Citrus rootstock seedlings *Plant Soil* **104**: 37–43

Menge J A, Lembright H, and Johnson E L V. 1977 Utilization of mycorrhizal fungi in Citrus nurseries Proceeding of International Society of Citriculture 1: 129

Nicolson T H. 1960

Mycorrhiza in Gramineae. II. Development in different habitats, particularly sand dunes *Transaction of the British Mycological Society* **43**: 132

Ojala J C, Jarell W N, Menge J A, Johnson E LV. 1983 Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil *Agronomy Journal* **75**: 255–259

Pfeiffer C M and Bloss H E. 1988

Growth and nutrition of guayule (*Parthenium* argentatum) in a saline soil as influenced by vesicular arbuscular mycorrhiza and phosphorus fertilization

New Phytologist 108(3): 315-321

Phillips J M and Hayman D S. 1970 Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection *Transaction of the British Mycological Society* **55**: 158

Rozema J, Asp W, Van Diggeln J, M-Van Esbrock, Brokeman R, Punte H. 1986 Occurrence and ecological significance of vesicular arbuscular mycorrhiza in the salt marsh environment

Acta Botanica Neerlandica 35: 457-467

Spatial variations of AM fungi in *Terminalia crenulata* Roth. from the Western Ghat region of Goa, India

Sharda W Khade* and B F Rodrigues

Introduction

AMF (arbuscular mycorrhizal fungi) is important in influencing the diversity and distribution of plant communities. AMF colonize roots and subsequently provide plants with an increased ability to take up scarce nutrients resulting in increased growth, drought tolerance, and protection against diseases. In return, AMF are dependent on plants for their carbohydrate requirements. Pot experiments show that different species of AMF clearly invoke different growth responses of individuals within a plant species (Mangan, Eom, Adler, *et al.* 2004).

The state of Goa lies in the heart of the Western Ghats, which is one of the hotspots of biodiversity (Khade and Rodrigues 2002). The major portion of the slopes of the Western Ghats belt falls in this region, encompassing luxuriant forests with good diversity (Rao 1985). AM (arbuscular mycorrhizal) association in pteridophytes, medicinal plants, and forest trees from Western Ghat region of Goa have been documented (Khade and Rodrigues 2002). However, studies investigating the ecological importance of beneficial fungi such as AMF are in rudimentary stage (Mangan, Eom, Adler, et al. 2004). Therefore, in present paper studies on spatial variations of AMF associated with Terminalia crenulata Roth., a timber yielding tree commomly occurring in forest area of Western Ghat region of Goa, was undertaken.

Material and methods

T. crenulata Roth., which belongs to the family Combrataceae and commonly occurs in four forest areas from the Western Ghat region of Goa, was considered for the study (Table 1).

Site no.	Site Name
1	Mollem
2	Collem
3	Dharbandoda
4	Anmod

Root and rhizosphere soil samples of five trees/ site were collected during March 2001. Care was taken to trace back the roots of the selected trees while sampling. Rhizosphere samples were collected upto a depth of 0-25 cm. Samples were packed in polyethylene bags and transported to the laboratory. Root samples were freshly processed, whereas the soil samples were stored at 4 °C until analysed. The roots were cleared and stained in 0.05% trypan in lactoglycerol (Phillips and Hayman 1970) and the degree of colonization was estimated by slide method (Giovannetti and Mosse 1980). Spores of AMF were isolated by wet sieving and decanting method (Gerdemann and Nicolson 1963) and quantification of spore density was carried out (Gaur and Adholeya 1994). AMF were identified to species level using bibliographies provided by Schenck and Perez (1990) and Walker and Vestberg (1998). Taxonomic identification of spores was matched with the descriptions provided by the International Collection of Vesicular Arbuscular Mycorrhizal Fungi.¹ Standard deviation was calculated for mean root colonization and mean spore density of AMF.

Diversity indices

Species richness per site is the mean number of AM fungal species associated with each site (Beena, Raviraja, Arun, *et al.* 2000).

Frequency of occurrence

Frequency of occurrence of AMF was calculated using the following formula (Beena, Raviraja, Arun, *et al.* 2000).

Number of soil samples that possess spores of particular species

× 100

Frequency (%)= Total number of soil samples screened

Results and discussion

Data on AM status of *T. crenulata* Roth. is presented in Table 2. AM colonization was

* Current address for correspondence

Dr Sharda W Khade, Darshan Apartments, IInd floor, Vidhyanagar Colony, Carenzalem, Panaji, Goa - 403 002, India Department of Botany, Goa University, Taleigao Plateau, Goa - 403 206, E-mail: sharda_khade@yahoo.com

¹ Details available at <http://invam.caf.wvu.edu>

Table 2Arbuscular mycorrhizal status of *Terminalia crenulata*Roth. from the Western Ghat region of Goa

	Sites			
AM fungal parameters	1	2	3	4
Type of colonization	HV	HV	HV	HV
Total root colonization (%)	50 ± 4.82	33 ± 6.40	37 ± 2.21	30 ± 1.78
Spore density/100g soil	24 ± 4.8	116 ± 15.42	512 ± 0.76	80 ± 2.4

AM – arbuscular mycorrhizal; H – Hyphal colonization; V – Vesicular colonization

characterized by the presence of hyphae and vesicles. This is in accordance with the findings of Khade and Rodrigues (2003) who reported hyphal and vesicular colonization in *T. crenulata* Roth. collected from Site 1. The lowest and highest root colonization was recorded from Site 4 (30%) and Site 1 (50%) and the minimum and maximum spore density was recorded from Site 1 (20 spore/ 100 g soil) and Site 3 (512 spore/100 g soil). Similarly, Khade and Rodrigues (2003) reported 84% root colonization and 340 spore/100 g soil in *T. crenulata* Roth. from Site 1.

The diversity of AMF associated with *T. crenulata* Roth. is presented in Table 3. A total of

Figure 1 (a) A portion of sporocarp of *Glomus taiwanensis* (×100)

(b) Cluster of spores of Glomus taiwanensis (× 100)

(c) A single spore of *Glomus taiwanensis* (× 1000)

[Note The thickened spore wall at the apex of the spore]

six species belonging to three genera – *Acaulospora, Glomus,* and *Scutellospora* – were recorded in the present study. Similarly, Khade and Rodrigues (2002) reported 16 AM fungal species belonging to four genera – *Acaulospora, Glomus, Sclerocystis,* and *Scutellospora* – in medicinal plants from the Western Ghats and adjoining region. Further, Khade and Rodrigues (2002) reported 17 AM fungal species belonging to five genera – *Acaulospora, Gigaspora, Glomus, Sclerocystis,* and *Scutellospora* – in commonly occurring pteridophytes from Chorlem and Site 1.

In the present study, the genus *Glomus* was dominant and recovered from all the study sites. The highest frequency of occurrence (100%) was recorded in *Glomus taiwanensis* (Wu and Chen), followed by *G. fasiculatum* (Thaxt.) Gerd. (Almeida and Schenck), and Trappe emend. Walker and Koske (75%) at Site 4. However, AMF belonging to two other genera recovered from Site 4 – *Acaulospora* and *Scutellospora* – recorded a frequency of occurrence of 25% each. In the present study, the minimum species richness (1 species/tree) was recorded at Site 1, while maximun species richness (4 species/tree) was recorded at Site 3 and Site 4 respectively.

Consequently, the present study brings out spatial variability in root colonization, spore population, and species diversity of AMF in *T. crenulata* Roth. from the Western Ghats of Goa.

Acknowledgement

Dr Sharda W Khade is grateful to the Planning Commission, Government of India, New Delhi, for the financial support provided.

References

Beena K R, Raviraja N S, Arun A D, Sridhar K R. 2000 Diversity of arbuscular mycorrhizal fungi on coastal sand dunes of the west coast of India *Current Science* **79**(10): 1459–1465

Table 3 Diversity of AM fungi associated with Terminalia crenulata Roth. from the Western Ghat region of Goa

	Sites				
AM fungal parameters		2	3	4	Frequency of occurrence (%)
Acaulospora scrobiculata Trappe	-	-	-	+	25
Glomus fasiculatum (Thaxt.) Gerd. and Trappe emend. Walker and Koske	-	+	+	+	75
Glomus clariodeum Schenck and Smith emend. Walker and Vestber	-	-	-	+	25
Glomus multicaule Gerd. and Bakshi	-	-	+	-	25
Glomus taiwanensis (Wu and Chen) Almeida and Schenck	+	+	+	+	100
Scutellospora fulgida Koske and Walker	-	-	+	-	25
Species richness	1	2	4	4	-

AM - arbuscular mycorrhizal; + - presence of AMF; - - absence of AMF

Gaur A and Adholeya A. 1994 Estimation of VAM spores in the soil – a modified method Mycorrhiza News 6(1): 10–11

Gerdemann J W and Nicolson T H. 1963 Spores of mycorrhizal *Endogone* species extracted from soil wet sieving and decanting *Transactions of British Mycological Society* **46**: 235–244

Giovannetti M and Mosse B. 1980 An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots New Phytologist 84: 489–500

Khade S W and Rodrigues B F. 2002 Arbuscular mycorrhizal fungi associated with some pteridophytes from Western Ghat region of Goa *Tropical Ecology* **43**(2): 251–256

Khade S W and Rodrigues B F. 2003 Occurrence of arbuscular mycorrhizal fungi in tree species from Western Ghats of Goa, India Journal of Tropical Forest Science 15(2): 320–331

Khade S W, Bukhari M J, Jaiswal V, Gaonkar U C, and Rodrigues B F. 2002

Arbuscular mycorrhizal status of medicinal plants: a field survey of AM fungal association in shrubs and trees

Journal of Economic and Taxonomic Botany 26(3): 571-578

Mangan S A, Eom A H, Adler G H, Yavitt J B, Herre E A. 2004

Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities *Oecologia* **141**(4): 687–700

Phillips J M and Hayman D S. 1970 Improved procedure for clearing roots and staining of mycorrhizal fungi for rapid assessment of infection

Transactions of British Mycological Society 55: 158–161

Rao S R. 1985 *Flora of Goa, Diu Daman Dadra and Nagar Haveli – volume I and volume II* New Delhi: Deep Printers

Schenck N C and Perez Y. 1990 *Manual for the identification of VA Mycorrhizal fungi* Gainesville, Florida: Synergistic Publications

Walker C and Vestberg M. 1998 Synonymy amongst the arbuscular mycorrhizal fungi: *Glomus claroideum, G. maculosum, G. multisubstensum* and *G. fistulosum Annals of Botany* **82**: 601–624

Centre for Mycorrhizal Culture Collection

Disposal of black liquor wastewater through high rate transpiration system using selected species of plants and mycorrhiza

Anoop Singh, Veeranna A Channashettar, Reena Singh, and Alok Adholeya Centre for Mycorrhizal Research, The Energy and Resources Institute, New Delhi 110 003 India

Introduction

In recent years, the effluent discharged from pulp and paper mills into land and water bodies has become a problem of immense importance. Pulp and paper mills are categorized as one (out of seventeen) of the most polluting industries by the CPCB (Central Pollution Control Board) (CPCB 1999). Increasing public concern regarding proper disposal of potential toxicants and an anticipated future, filled with stringent regulatory measures, led to the development of several abatement processes in the industry. Unfortunately, none of

22

the existing wastewater treatment processes offer a perfect solution.

The effluents generated by pulp and paper mills, utilizing lignocellulosics such as straw and bagasse, constitute an issue of significant environmental concern. In India, small paper mills, whose the two main raw materials are straw and bagasse, account for about half of the total installed capacity. The combined pollution load of these mills, in terms of lignin, is about four times higher than that of larger paper mills. The wastewater discharged by this industry is highly heterogeneous. It contains compounds from wood and/or other raw materials, processed chemicals, and other compounds formed during processing.

The Indian paper industry is more than a hundred years old. Most mills, except for a few new and modernized ones, are built based on obsolete process technologies as far as effluent handling is concerned. There are, at present, 9000 large and medium industries in India, approximately 300 of which are paper mills. Among these, 40 are large, producing more than 35 tonnes of paper per day, and the rest are medium or small. Besides being pollution intensive, the paper making process is energy, chemical, and water intensive. (Nemade, Kumar, and Alappat 2003). It ranks fifth among the major industries contributing to water pollution (Springner 1993). Effluent discharged from these mills has a mixture of chemicals used in the digestion of raw wood chips, cellulose fibres, dissolved lignin, and wood preservatives (Patel and Gadhiya 2000).

Taking into consideration the above facts, there is a real need for the development of technology related to low-cost materials that could be applied to industrial effluent in order to reduce their pollution load on land and water bodies. The pulp and paper industry is likely to face stringent regulations on the quality of effluent entering water bodies. The problems faced by the industry relate to residual COD (chemical oxygen demand), toxicity, and colour.

For small-scale paper mills using agricultural residues as their raw material, the installation of CRP (chemical recovery plant) for soda recovery has been suggested. However, the high cost of establishing a conventional CRP is a major deterrent for most of the small paper mills. There is another option of soda ash recovery, which is slightly cheaper to establish and is presently being exercised by some paper mills like Shreyans papers, Ahmedgarh, Punjab. The apprehension among paper mills is that, if all of them go for soda ash recovery, it would not be economically feasible to get a good market for it.

The HRTS (high rate transpiration system) is a low-cost alternative to conventional wastewatertreatment systems for industries that use large areas of cultivable land for disposing their effluents. This is a promising technology, where selected plant species along with mycorrhiza are used for reclamation, as well as providing an option of loading huge volumes of wastewaters in a small area of land with no obvious side effects.

Materials and methods

The present study was conducted at the Madhya Bharat Paper Mills Ltd, Champa, Chhattisgarh, India. In order to implement the HRTS technology, seven raised field-beds, 112–119 m long and 4.5 m wide at the base, were prepared to a height of 1 m. The field-beds were made using soil dug from the region contaminated with the effluent as well as good earth brought from outside. The base of the trenches was layered with polysheet to control any percolation into the groundwater and soil. Thereafter, fly ash was spread over the raised beds (Figure 1). A single drip irrigation tube, with 0.5 m spacing, was placed in the centre of each raised bed surface.

Figure 1 Design of raised beds and sampling depths at the Madhya Bharat Paper Mills Ltd site

At first, green manuring was carried out by growing Dhaincha (*Sesbania aculeate*). Other selected plants such as *jatropha*, Paras Peepal (*Ficus* sp), Marigold (*Tagetus*), *Casurina*, Peelu (*Salvadora*), Akkuwa (*Calotropis*), and grasses like *Phragmites*, *Vetiver*, and *Salicornia* (Necklace weed) were then planted, with an inter-plant spacing of 1 m. These plants were pre-inoculated with specific mycorrhizal species, making the plants more efficient towards drawing nutrients from available and non-available parts.

Physico-chemical characterization of this effluent was carried out using standard methods (APHA 1995). Effluent loss from the trenches was monitored daily and a monthly average was calculated.

Results and discussion

The physico-chemical composition of fresh black liquor and black liquor filled in the trenches, along with permissible limits defined by CPCB, is presented in Table 1. After one year of initiating the project, a green cover enveloped the raised beds. Black liquor consumption in different months is given in Table 2. The maximum per day consumption was observed in May (105 m³), while highest rate per acre was recorded in February (78) m³). Higher transpiration rate per unit area was achieved, resulting in higher rate of removal of effluent within a smaller area. Also, a much higher rate of effluent loss was observed in HRTS region as compared to the open lagoon region. Plants and microorganisms are able to thrive and take resources from the effluent in the form of nutrients and moisture for their survival and growth. The technology confirms no percolation to neighbouring soils and groundwater due to polylining at the base.

The HRTS technology, as implemented at the Madhya Bharat Paper Mills Ltd has, so far, been effective in managing the black liquor released by the

24

Table 2Black liquor consumption using HRTS technology atMadhyaBharat Paper Mills Ltd

Month of loading	<i>Rate per day</i> (m³)	Rate per acre (m ³)
December 2005 (zero time)	92.88	57.33
January 2005	79.09	48.82
February 2005	93.96	78.03
March 2005	78.48	48.44
April 2005	89.97	39.02
May 2005	105.45	65.01

HRTS - high rate transpiration system

industry. This is done using selected species of plants and microbes in a relatively smaller area, with provisions of preventing contamination of groundwater and neighbouring soils through leaching, percolation, and surface run-off.

References

APHA (American Public Health Association). 1995 Standard methods for the examination of water and wastewater Washington, DC: APHA

CPCB (Central Pollution Control Board). 1999 **Technologies for pollution control: industry** *Parivesh* **6**(ii)

Nemade P D, Kumar S, and Alappat B J. 2003 **Enzyme application for control in paper industry** *Nature Environment and Pollution Technology* **2**(1): 47-51

Patel P and Gadhiya M. 2000 Effectiveness of effluent treatment plant of pulp and paper mill.

Journal of Ecotoxicology and Environmental Monitoring **10**(1): 43-46

Springner A M. 1993 *Industrial Environmental Control* Washington, DC: TAPPI publication

	Table 1 Ph	ysico-chemical	profile of fresh	black liquor	and trench black	liquor along with	permissible limits of CF	νСВ
--	------------	----------------	------------------	--------------	------------------	-------------------	--------------------------	-----

Parameter	Fresh liquor	Trench black liquor 1	Trench black liquor 2	Permissible limits (CPCB)
pH at 25 °C	8.9	8.7	8.8	5.5 to 9.0
Conductivity (mS/cm)	12.5	15.6	16.3	Not specified
Total dissolved solids (g/litre)	34	46	48	Not specified
Total suspended solids (g/litre)	12	15	16	0.1 (g/litre)
Total silica % (w/v as SiO ₂)	1.38	1.15	1.22	Not specified
Total sodium % (w/v)	18.7	12.98	12.65	Not specified
COD (g/litre)	6.5	7.5	7.65	Not specified
BOD (g/litre)	0.85	1.25	1.32	0.1 (g/litre)
Total alkalinity (as CaCO ₃)	1325	1565	1585	Not specified

CPCB - Central Pollution Control Board; mS/cm - milli Siemens per centimeter; w/v - weight per volume

Recent references

The latest additions to the network's database on mycorrhiza are published here for the members' information.

The Mycorrhiza Network will be pleased to supply any of the available documents to bonafide researchers at a nominal charge. This list consists of papers from the following journals.

- Applied Soil Ecology
- Arab Gulf Journal of Scientific Research
- Biology And Fertility of Soils
- Bioresource Technology
- Brazilian Journal of Microbiology
- Compost Science and Utilization
- Ecological Applications
- European Journal of Soil Science
- Forest Ecology and Management
- Fungal Genetics and Biology
- International Journal of Phytoremediation
- Journal of Applied Botany and Food Quality-Angewandte Botanik
- Journal of Ecology

- Journal Of Experimental Botany
- Journal of Plant Diseases and Protection
- Journal of Plant Nutrition
- Microbe Interactions
- Mycorrhiza
- New Phytologist
- Pesquisa Agropecuaria Brasileira
- Physiologia Plantarum
- Plant and Soil
- Plant Biosystems
- Plant Growth Regulation
- Revista Fitotecnia Mexicana
- Scientia Horticulturae

Copies of papers published by mycorrhizologists during this quarter may please be sent to the Network for inclusion in the next issue.

Name of the author(s) and year of publication	Title of the article, name of the journal, volume number, issue number, page numbers (address of the first author or of the corresponding author, marked with an asterisk)
Auge R M*, Toler H D, Sams C E, Nasim G. 2008	Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18(3): 115–121 [*R M Augé, Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA, e-mail: auge@utk.edu]
Bai J F, Lin X G*, Yin R, Zhang H Y, Wang J H, Chen X M, Luo Y M. 2008.	The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils <i>Applied Soil Ecology</i> 38 (2): 137–145 [*Lin X G, Chinese Academy of Sciences, The Institute of Soil Science, Department of Soil Biology and Biochemistry, 71 E Beijing Rd, Nanjing 210008, Peoples R China]
Behl R K*, Ruppel S, Kothe E, Narula N. 2007	Wheat × Azotobacter × VA mycorrhiza interactions towards plant nutrition and growth – a review Journal of Applied Botany and Food Quality-Angewandte Botanik 81(2): 95–109 [*Beh l R K, CCS Haryana Agricultural University, Department of Plant Breeding, Hisar 125004, Haryana, India]
Carlsen S C K, Understrup A, Fomsgaard I S, Mortensen A G, Ravnskov S*. 2008	Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus <i>Plant and Soil</i> 302 (1–2): 33–43 [*Ravnskov S, University of Aarhus, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Research Centre Flakkebjerg, D-4200 Merseburg, Germany]
Carrillo M A, Franco A D*, and Cano I G. 2007.	Okra (Abelmoschus esculentus L.) mycorrhization under drip irrigation <i>Revista Fitotecnia Mexicana.</i> 30 (4): 437–441 [*Franco A D, Instituto Nacional de Investigaciones Forestales, Agricolas y and Pecuarias, Km 61 Carr Matamoros Reynosa, Apdo Postal 172, Rio Bravo 88900, Tam, Mexico]

Name of the author(s) and year of publication	Title of the article, name of the journal, volume number, issue number, page numbers (address of the first author or of the corresponding author, marked with an asterisk)
Ca rtmill A D, Valdez-Aguilar L A*, Bryan D L, Alarcon A. 2008	Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water Scientia Horticulturae 115(3): 275–284 [*Valdez-Aguilar L A, USDA ARS, US Salin Lab, 450 W Big Springs Rd, Riverside, CA 92507]
Colla G*, Rouphael Y, Cardarelli M, Tullio M, Rivera C M, Rea E. 2008	Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration <i>Biology and Fertility of Soils</i> 44 (3): 501–509 [*Colla G, Univ Tuscia, Dipartimento Geol and Ingn Meccan, I-01100 Viterbo, Italy]
Cudlin P, Kieliszewska-Rojucka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker M R, Borja I, Konopka B, Leski T, Kraigher H*, Kuyper T W. 2007	Fine roots and ectomycorrhizas as indicators of environmental change <i>Plant Biosystems</i> 141 (3): 406–425 [*Kraigher H, Slovenian Forestry Inst, Vecna Pot 2, Ljubljana 1000, Slovenia]
da Silva F S B, Yano- Melo A M, Maia L C*. 2007	Production and infectivity of inoculum of arbuscular mycorrhizal fungi multiplied in a substrate supplemented with Tris-HCL buffer Brazilian Journal of Microbiology 38 (4): 752–755 [*Maia L C, Univ Fed Pernambuco, Ctr Ciencias Biol, Dept Micol, BR-50670420 Recife, PE, Brazil]
Al-Karaki G N O*, Othman Y, Al-Ajmi A. 2007.	Effects of mycorrhizal fungi inoculation on landscape turf establishment under Arabian Gulf region conditions . <i>Arab Gulf Journal of Scientific Research</i> 25 (3): 147–152. [*Al-Karaki G N O, Arabian Gulf University, Manama, Bahrain]
Azcon R*, Rodriguez R, Amora-Lazcano E, Ambrosano E. 2008	Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil . <i>European Journal of Soil Science</i> 59 (2): 131–138 [*Azcon R, CSIC, Estac Expt Zaidin, Department of Microbiology Suelo and Sist Simbiot, Granada 18008, Spain]
Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P*. 2007	Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. <i>Molecular Plant-Microbe Interactions</i> 20 (9): 1055–1062 [*Bonfante P, University of Turin, CNR, Ist Protez Piante, Viale Mattioli 25, I- 10125 Turin, Italy]
Cavagnaro T R*. 2008	The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review <i>Plant and Soil</i> 304 (1-2): 315-325 [*Cavagnaro T R, Monash University, School of Biological Sciences, Clayton, Vic 3800, Australia]
Chen Y, Yuan J G, Yang Z Y*, Xin GR, Fan L. 2008	Associations between arbuscular mycorrhizal fungi and Rhynchrelyrum repens in abandoned quarries in southern China. <i>Plant and Soil</i> 304 (1-2): 257-266 [*Yang Z Y, National Sun Yat Sen University, State Key Lab Biocontrol, Ghangzhou 510275, Peoples R China]
Cheung K C, Zhang J Y, Deng H H, Ou Y K, Leung H M, Wu S C, Wong M H*. 2008.	Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation Bioresource Technology 99(7): 2148-2155 [*Wong M H, Hong Kong Baptist University, Department of Biology, Croucher Inst Environmental Science, Hong Kong, Hong Kong, Peoples R China]

26

Mycorrhiza News 20(2) • July 2008

Forthcoming events

Conferences, congresses, seminars, symposia, and workshops

24–29 August 2008 Torino, Italy	ICPP 2008: 9th International Congress of Plant Pathology Valentina Communication Via Cibrario 27, 10104 Torino, Italy
	<i>Fax</i> +39 011 4374318 • <i>E-mail</i> info@icpp2008.org <i>Website</i> http://www.icpp2008.org
29 September–3 October 2008 Bonn, Germany	The 6th International Conference on Mushroom Biology and Mushroom Products Tourismus and Congress GmbH, Region Bonn/Rhein-Sieg/Ahrweiler Adenauerallee 131 · D-53113 Bonn, Germany
	Tel+49(0)228-9104149•E-mailinfo@WSMBMP-Conference.deFax+49(0)228-91041-77•Websitewww.WSMBMP-Conference.de
29 October–1 November 2008 Kusadasi, Turkey	International Meeting on Soil Fertility Land Management and Agroclimatology Scientific Secretariat Dr Mehmet Ali Demiral, Adnan Menderes University, Faculty of Agriculture Dept. of Soil Science - Aydýn/Turkey
	Tel +90 256 772 7022/1906 • E-mail secretariat@soilscience2008.org Fax +90 256 772 7233 • Website www.Soilscience2008.org
10–14 September 2008 Warsaw, Poland	International Life Science Students Conference The University of Warsaw and The Warsaw University of Life Sciences
	<i>Tel</i> +48 605 722 884 <i>E-mail</i> kulis.marta@gmail.com / info@lifescienceconference.pl <i>Website</i> http://lifescienceconference.pl

NEW RELEASE

Price Rs 795 / \$30; paperback **Pages** 288 **Size** 7.25 × 9.5 inch **ISBN** 81-7993-126-9

Genetically Modified Organisms

emerging law and policy in India by K D Raju

The scientific controversies involving genetic science and 'biosafety', particularly GMOs (genetically modified organisms) or LMOs (living modified organisms), have not been well understood by many. The Cartagena Protocol is the first international agreement to regulate the transboundary movement of GMOs.

The current volume focuses on the international and national legal regimes, and the Indian situation is analysed closely. It sets out with

the scientific debate first, followed by socio-economic analysis of some case studies from various states. Later part of the discussions is centred around the evolving international law on the subject. The discussions in this volume significantly contribute to the ongoing debate on GMOs and serve as an important input for policy-making in India.

Key contents

- Is genetically modified technology desirable? The law and economics of *Bt* cotton
- Biotechnology applications in the agriculture sector: Cartagena Protocol and possible conflict with different international agreements
- Genetically modified organisms and biosafety: an Indian perspective
- The liability question under multilateral environmental agreements: an appraisal
- Standard of liability under the Cartagena Protocol on Biosafety: need for an equitable regime
- Precaution, risk, and biotechnology: a comparison of the Cartagena Protocol on Biosafety and the WTO Agreement on the Application of Sanitary and Phytosanitary Measures
- International law jurisprudence on environmental protection and Indian practice
- The US-EU biotech product case: policy implications for agribiotech in India
- Regulatory and governance issues relating to genetically modified crops in India
- Indian biopharmaceutical industry in the era of globalization: path for novel drug industry

Editor Alok Adholeya • Associate Editor T P Sankar • Assistant Editor Yoofisaca S Nongpluh

Printed and published by Dr R K Pachauri on behalf of The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi – 110 003, and *printed at* Multiplexus (India), C-440, DSIDC, Narela Industrial Park, Narela, Delhi – 110 040.